Thursday, 11 October 2012

VECTOR GROUP TEST OF X-MER


Vector Group Test of Transformer

The vector group of transformer is an essential property for successful parallel operation of transformers. Hence every electrical power transformer must undergo through vector group test of transformer at factory site for ensuring the customer specified vector group of transformer.
The phase sequence or the order in which the phases reach their maximum positive voltages, must be identical for two paralleled transformers. Otherwise, during the cycle, each pair of phases will be short circuited.

We know that, the primary and secondary coils on any one limb have induced emfs that are in time - phase. Let's consider two transformers of same number primary turns and the primary windings are connected in star. The secondary number of turns per phase in both transformers are also same. But the first transformer has star connected secondary and other transformer has delta connected secondary. If same voltages are applied in primary of both transformers, the secondary induced emf in each phase will be in same time-phase with that of respective primary phase, as because the the primary and secondary coils of same phase are wound on the same limb in the core of transformer. In first transformer, as the secondary is star connected, the secondary line voltage is √3 times of induced voltage per secondary phase coil. But in case of second transformer, where secondary is delta connected, the line voltage is equal to induced voltage per secondary phase coil. If we go through the vector diagram of secondary line voltages of both transformer, we will easily find that there will be a clear 30o angular difference between the line voltages of these transformers. Now, if we try to run these transformers in parallel then there will be a circulating current flows between the transformers as because there is a phase angle difference between their secondary line voltages. This phase difference can not be compensated. Thus two sets of connections giving secondary voltages with a phase displacement can not be intended for parallel operation of transformers.The several secondary connections are available in respect of various primary three phase connection in a the three phase transformer. So for same primary applied three phase voltage there may be different three phase secondary voltages with various magnitudes and phases for different internal connection of the transformer. Let's have a discussion in detail by example for better understanding.
The following table gives the connections for which from the view point of phase sequence and angular divergences, transformer can be operated parallel. According to their vector relation, all three phase transformers are divided into different vector group of transformer. All electrical power transformers of a particular vector group can easily be operated in parallel if they fulfill other condition for parallel operation of transformers.
GROUPConnectionConnection
0
(0o)
Yy0
Dd0
1
( 30o)
Yd1
Dy1
6
( 180o)
Yy6
Dd6
11
( - 30o)
Yd11
Dy11

Procedure of vector group test of transformer

vector group test
Let’s have a YNd11 transformer.
1) Connect neutral point of star connected winding with earth.

2) Join 1U of HV and 2W of LV together.

3) Apply 415V, three phase supply to HV terminals.

4) Measure voltages between terminals 2U – 1N, 2V – 1N, 2W – 1N, that means voltages between each LV terminal and HV neutral.

5) Also measure voltages between terminals 2V – 1V, 2W – 1W and 2V – 1W.

For YNd11 transformer, we will find,
2U – 1N > 2V – 1N > 2W – 1N
2V – 1W > 2V – 1V or 2W – 1W
The vector group test of transformer for other group can also be done in similar way.

4 comments:

  1. Vector group is very much important in order to achieve successful operation of the parallel performing transformers. Thanks for explaining in brief!!
    Wire harness manufacturer in India | Toroidal transformer in India

    ReplyDelete
  2. Hello,

    is there anywhere a table or the like where all formulars for different vector groups are listed?
    And is there any way to differentiate between Yy0 and Dd0 or Dyn11 and Yzn11. Because then the formulars are pretty much the same.

    Greetings

    ReplyDelete
  3. Powerstaq International Engineers
    C-5, Svs garden,Plot-4,Venkateshwara nagar,
    Anakaputtur,Chennai-70
    Tamilnadu,India
    info@powerstaqinternational.com

    ReplyDelete